
An Approach to Incentive-based Reputation for Communities of Web Services

Babak Khosravifar1, Jamal Bentahar1, Philippe Thiran2, Ahmad Moazin1, and Adrien guiot2
1Concordia University, Canada,2University of Namur, Belgium

b khosr@encs.concordia.ca, bentahar@ciise.concordia.ca, pthiran@fundp.ac.be
a moazi@encs.concordia.ca, aguiot@student.fundp.ac.be

Abstract

Community of web services (CWS) is a society composed by
a number of functionally identical web services. The communi-
ties always aim to increase their reputation level in order to obtain
more requests. In this paper, we propose an effective mechanism
dealing with reputation assessment for communities of web ser-
vices. The proposed mechanism is based on after-service feed-
backs provided by the users to a run-time logging system. The
proposed method defines the evaluation metrics involved in repu-
tation assessment of a community, and supervises the logging sys-
tem in order to verify the validity and soundness of the feedbacks
provided by the users. In this paper, the proposed framework is de-
scribed, a theoretical analysis of its assessment and its implemen-
tation along with empirical result discussions are provided. We
also show how our model is efficient, particularly in very dynamic
environments.
Keywords.Web Service, Community, Reputation.

1 Introduction

Literature Review. As one of the recent technolo-
gies for developing loosely-coupled, cross-enterprize busi-
ness processes (usually referred to as B2B applications), a
plethora of web services exists on the web waiting to re-
ceive users’ requests for processing. This continuous choice
is usually reputation-driven. In literature, the reputation of
web services have been intensively stressed [10]. In [1], the
authors have developed a framework aiming to select web
services based on the trust policy expressed by the users.
The framework allows the users to select a web service
matching their needs and expectations. In [2], Malik et al.
have proposed a model to compute the reputation of a web
service according to the personal evaluation of the previous
users. The characteristic of this method is that the credi-
bility of the users evaluating the web service is taken into
account. If the rater tries to provide a fake rating, then its
credibility will be decreased and the rating of this user will
have less importance in the reputation of the web service.

In [4], the authors have designed a multi-agent framework
based on an ontology for QoS. The users’ ratings according
to the different qualities are used to compute the reputation
of the web service. In [6, 10], some web services reputa-
tion mechanisms have been proposed, that would lead to an
effective service selection, and in [5], service-level agree-
ments are discussed in order to set the penalties over the
lack of QoS for the web services. In general, in all the men-
tioned models, web services are considered to act individu-
ally and not in collaboration with other web services.

Recently, there have been few attempts to address the
formation and reputation of Communities of Web Services
(CWSs) [7, 13]. The main property of a CWS is to facil-
itate and improve the process of web service selection and
effectively regulate the process of user requests. There are
underlying reasons for this. First, the community gathers a
set of functionally homogeneous web services regardless of
who developed them, where they are located, and how they
function. Given that some communities offer the same func-
tionality (hotels booking, weather forecasting, etc.), there is
a competition between different communities. In this case,
reputation is considered as a differentiation driver of the
communities. Moreover, reputation helps users to select the
most reputable community, which would provide the best
QoS, and helps providers to join the best community, which
would bring them the most value. In [7],Elnaffar et al.pro-
pose a reputation-based architecture for CWSs and classify
the involved metrics that affect the reputation of a commu-
nity. They derive the involved metrics by processing some
historical performance data recorded in a run-time logging
system. The purpose is to be able to analyze the reputation
in different points of view, such as users to CWSs, CWSs
to web services, and web services to CWSs. The authors
discuss the affect of different factors while diverse reputa-
tion directions are analyzed. However, they do not derive
the overall reputation of a CWS from the proposed metrics.
Moreover, they assume that the run-time logging mecha-
nism is an accurate source of information.

Proposed Model. In this paper, we extend the work
done in [7] by two contributions. In the first contribution,

1



Figure 1. Architecture of reputation-based CWS

we propose a reputation model of a community of web ser-
vices, which is based on involved metrics (responsiveness,
inDemand, satisfaction and time recency). This model is
used by users and providers to estimate the reputation of a
community. In the second contribution, we discuss more on
the feedback logging mechanism and give a reliable mech-
anism (capable of managing malicious acts of agents). We
assume that the CWS may be encouraged to violate such
run-time logging mechanism in support of themselves or
against other communities. To this end, we discover the
points of violation in the sense that the controller agentCg
(the agent, that is assigned to monitor the logging data and
introduced in Section 4) to some extent, makes sure that
the violation is taken place. Then we propose a method to
properly react for such violations. We provide a theoretical
analysis based on backward induction to prove that there is
an incentive for communities not to violate the logging sys-
tem. In this analysis, we derive the comparative values of
reward and penalties for CWSs in order to obtain such an
incentive. The simulations results reveal how, empirically,
our trust model yields a system that autonomically adjusts
the level of CWS’s reputation.

What specifically distinguishes our model from other
similar works in the literature is: (1) its sound formation
of the reputation assessment for the CWSs; and (2) its
incentive-based reputation adjustment in the sense that al-
though the communities are capable of misleading the log-
ging system in support of themselves (or against their op-
ponents), they will not take the risk to do that, given the
fact that they are aware of possible consequent penalty that
would decrease their current reputation level. The intuitions
behind the incentive-based mechanism are: (1) we obtain an
accurate information for deriving the involved metrics used
for the reputation of a particular community; and (2) we ob-
tain an overall higher reliability and efficiency in the sense

that upon violation detection, CWSs are strictly encouraged
to show an acceptable performance in their further user re-
quest processes. This factor is analytically proved in Sec-
tion 4.3 and experimentally shown in Section 5.

Organization. The remainder of this paper is orga-
nized as follows. In Section 2, we define the architecture
of reputation-embedded CWSs, which is composed of ex-
tended UDDI, user and provider agents and reputation sys-
tem. In Section 3, we discuss the reputation model by its
involved metrics and we propose a methodology to com-
bine them. In Section 4, we extend the discussion about
maintaining a sound logging mechanism used as source of
information for the metrics. We discuss the fake positive
and negative corrections and provide the incentive to avoid
fake attempts. In Section 5, we represent the simulation and
outline the properties of our model in the experimental en-
vironment. Finally, Section 6 concludes the paper.

2 Architecture of reputation-embedded Web
services Communities

In this section, we represent the CWS architecture [7].
This architecture is designed to maintain the reputation of
the communities. Here we assume that each web service has
is associated with a community and do not function alone. If
a web service is not registered in a community, it could not
be invoked by a user. However, a web service can be regis-
tered in one of many communities. In figure 1, we represent
different components of the architecture, with their reputa-
tion and interactions. These components together with their
detailed performance are explained as follows:
User agent.It is a proxy between the user and the other in-
teracting parties such as the extended UDDI, CWS and the
reputation system.

2



Master agent. This agent is considered as the representa-
tive of the community in the sense that it manages the com-
munity requests in selecting the proper web service. Mean-
while the master agent hires (or fires) some web services to
join (or leave) the community.
Provider agent. Like the user agent, it relates the provider
with the extended UDDI, CWS and the reputation system.
Extended UDDI. The traditional UDDI XML schema is
based on six types of information, allowing people to have
information in order to invoke the web services [8]. In the
UDDI registry, we restrict the access of the agents in the
sense that user and provider agents only consult the list
of masters, whereas the masters have access to the list of
the web services in the UDDI registry. By adding this new
kind of information concerning the CWSs, we would clar-
ify which CWS a web service belongs to.
Reputation system. Considering the fact that the CWSs
could offer the same service, thus they always compete
in order to obtain more requests. Therefore, evaluating
CWSs is unavoidable for users and providers. To be able
to compute the reputation of CWSs, the user and provider
agents must gather operational data, reflecting different per-
formance metrics, about the interaction between the user,
the provider and the CWS. The user agents should intercept
some logs likeSubmissions log, Response Time log, Invoca-
tion log, Successes log, Failure log, Recoveries logand so
on. It is important that the user and provider agents are in-
dependent parties in order to intercept trusted run-time data
about each web service interaction.

The reputation system is the core component in this ar-
chitecture. Its first functionality is to register the run-time
logs; and the second functionality is to rank the communi-
ties based on their reputation by using a ranking algorithm.
The ranking algorithm would maintain a restrictive policy,
avoiding the ranking violation, which could be done by
some malicious CWSs. The violation, which has not been
considered in [7], is done by providing some fake logging
data (by some colluding users) that reflect positive feedback
in support of the CWS, or by fake negative data that is reg-
istered against a particular community. To deal with this
violation, we propose to assign a controller agentCg. The
task of this agent is to update the CWS reputation rankings
in order to drop inaccurate registered data and thus enhance
accuracy of the reputation system. The detailed discussion
of this issue is provided in Section 4.

3 Reputation Model

For simplification reasons, in the remainder of this pa-
per, we only consider the users point of view (rather than
users and providers) in reputation assessment. In order to
assess the overall reputation of a CWS, the user needs to
take some correlated factors into account. In Section 3.1,

we present the involved metrics that a user may consider in
this assessment. Consequently, in Section 3.2, we explain
the methodology that the user uses to combine these metrics
in order to assess the reputation of a CWS.

3.1 Metrics

Responsiveness Metric:Let Ci be the community that
is under consideration by userUj . Responsiveness metric

depicts the time to be served by a CWS. LetRes
Uj ,Rt

k

Ci
be

the time taken by the master of the communityCi to answer
the request received at timet (Rt

k) by the userUj . This time
includes the time for selecting a web service from the com-
munity and the time taken by that web service to provide the
service for the userUj . Equation 1 computes the response
time of the communityCi, computed withUj during the

period of time[t1, t2] (Res
Uj ,[t1,t2]
Ci

), wheren is the number
of requests received by this community fromUj during this
period of time.

Res
Uj ,[t1,t2]

Ci
=

1

n

t2∑
t=t1

Res
Uj ,Rt

k
Ci

× e−λ(t2−t) (1)

Here the factore−λ(t2−t), whereλ ∈ [0, 1] reflects the time
recency of the received requests so that we can give more
emphasize to the recent requests. If no request is received

at a given timet, we supposeRes
Uj ,Rt

k

Ci
= 0.

InDemand Metric: It depicts the users’ interest for a
community Ci in comparison to the other communities.
This factor is computed in equation 2.

InD
[t1,t2]
Ci

=
Req

[t1,t2]
Ci∑M

k=1 Req
[t1,t2]
Ck

(2)

In this equation,Req
[t1,t2]
Ci

is defined as the number of re-
quests thatCi has received during[t1, t2], andM represents
the number of communities under consideration.

Satisfaction Metric: Let Sat
Uj ,Rt

k

Ci
be a feedback rating

value (which is supposed to be between0 and1) represent-
ing the satisfaction ofUj with the service regarding his re-
questRt

k sent at timet to Ci. Equation 3 shows the overall
satisfaction of the userUj to communityCi.

Sat
Uj ,[t1,t2]

Ci
=

1

n

t2∑
t=t1

Sat
Uj ,Rt

k
Ci

× e−λ(t2−t) (3)

3.2 Metrics Combination

In order to compute the reputation value of a CWS
(which is between0 and1), it is needed to combine these
metrics in a particular way. Actually, theResponsiveness
and Satisfactionmetrics are the direct evaluations of the
interactions between a user and a CWS whereas thein-
Demandmetric is an assessment of a community in rela-
tion to other communities. In the first part, each user adds

3



up his ratings of theResponsivenessandSatisfactionmet-
rics for each interaction he has had with the CWS. Equa-
tion 4 computes the reputation of the communityCi dur-
ing the interval[t1, t2] from the userUj point of view. In
this equation,ν represents the maximum possible response
time, so that if a community does not respond, we would
haveRes

Uj ,[t1,t2]
Ci

= ν. In the second part, theinDemand
metric is added. Therefore, the reputation ofCi from the
users’ point of view is obtained in equation 5.

Rep
Uj ,[t1,t2]

Ci
= η(1− Res

Uj ,[t1,t2]

Ci

ν
) + κSat

Uj ,[t1,t2]

Ci
(4)

Rep
[t1,t2]
Ci

= χ
1

m

m∑
j=1

(
Rep

Uj ,[t1,t2]

Ci

)
+ φ InDCi (5)

Whereη + κ = 1 andχ + φ = 1.

4 Sound Logging Mechanism

Without loss of generality, in a network composed of
CWSs, master agents (as representatives of communities)
are selfish and may alter their intentions in order to obtain
more benefits (in terms of popularity). This could hap-
pen by improving one’s reputation level or by degrading
other’s reputation level. We respectively refer to these cases
as fake positive/negative alteration. Violating the logging
feedbacks (distracting the reputation levels) could lead to
system inconsistency in the sense that low quality CWSs
may obtain more users or high quality communities may
loose some users. Therefore, it is important to avoid such
attacks and keep the logging mechanism accurate. In the
rest of this section, we explain how to perform fake pos-
itive/negative corrections and thus effectively maintain a
reputation adjustment.

In the proposed architecture for the CWS, the reputa-
tion is computed based on the information obtained from
the logging system that over the elapsing time, users leave
their feedbacks. Thus, it is essential to keep such logging
file accurate and discourage malicious actions. To this end,
a controller agentCg is assigned that his responsibility is to
maintain an accurate attack-resilient logging file. As a part
of the UDDI system,Cg has the authority to update infor-
mation such as overall reputation level of any CWS. With-
out loss of generality, we assume that this agent is highly
secured in order to avoid being compromised. However, if
Cg gets compromised with a given community, then incon-
sistent actions ofCg could be recognized by some other
communities, given the fact that they are competing with
one another. But this issue is out of the scope of this paper.

4.1 Fake Positive Correction

Fake positive recognition. One of the main responsi-
bilities of the controller agentCg is to perform fake posi-

Figure 2. Fake positive correction cases.

tive correction. To this end, initiallyCg should recognize
a malicious behavior from one or a set of user agents (that
could possibly collude with a particular community). This
recognition is done based on the recent observable change
in the reputation of a community. To this end,Cg would
always check the recent feedbacks of the communities. So
Cg would consider the reputation that is computed for a
specific period of time[t1 − ε, t1], wheret1 is the current
time. The valueε is set by the controller agent regarding to
the system inconsistency in the sense that if the network is
inconsistent, soCg would need to check most recent feed-
backs (ε as relatively small amount). Otherwise,Cg would
take even older feedbacks into account (ε as relatively large
amount). So,Rep

[t1−ε,t1]
Ci

is the reputation of the commu-
nity Ci obtained from data measured fromt1 − ε to t1. Let
U

[t1−ε,t1]
Ci

be the set of users that during this time interval
provided a feedback for this community, andtb be the be-
ginning time of collecting feedbacks.Cg would consider
the positive feedbacks to be suspicious if the reputation im-
provement (Rep

[t1−ε,t1]
Ci

− Rep
[tb,t1]
Ci

) divided by the num-
ber of users that caused such improvement is greater than
the predefined thresholdϑ, i.e:

Rep
[t1−ε,t1]
Ci

−Rep
[tb,t1]
Ci

|U [t1−ε,t1]
Ci

|
> ϑ

In that case, it is assumed that communityCi had a drastic
reputation increase in the recentε time.

Fake positive Adjustment. Exceeding the thresholdϑ,
Cg would figure out that a particular community is receiv-
ing consequent positives. ThenCg, in order to reload the
previous and actual reputation level, would freeze the re-
cent positive logs and notifies the corresponding commu-
nity of such suspending. So,Cg would observe the upcom-
ing behavior (in terms of satisfaction and responsiveness)
of the community in order to match the actual efficiency
with the suspended enhanced reputation level. During this
period, the community is encouraged to behave in such a
way that reflects the suspended enhanced reputation level
(see Figure 2). If the community showed the real improved
performance, the suspended reputation trust level would be
redeemed and considered for his reputation. But if the com-
munity failed to do so, the previous reputation level will

4



be decreased by some applied penalties. In this case, the
community would be in such a situation that either has to
outperform its past in order to improve the enhanced reputa-
tion level, or would loose its current reputation, which is not
wanted. Therefore, we form an incentive that communities
would not risk their current reputation level and thus they
do not by any means (colluding with users or providers)
provide fake positives in support of themselves. We as-
sume thatt0 is the start time of leaving fake positives in
the logging file,t1 is the time thatCg recognizes such fake
actions and consequently starts investigating the upcoming
efficiency of such community, andt2 is the time thatCg
would update the particular community’s reputation value.
Let Evol

[t1,t2]
Ci

be the evolutionary reputation value for the
communityCi that is measured by theCg during specified
time interval [t1, t2] (investigation period). This value is
computed in equation 6, whereδ is a small value that the
reputation is measurable within[t− δ, t].

Evol
[t1,t2]
Ci

=

∑t2
t=t1+δ Rep

[t−δ,t]
Ci

t2 − t1
(6)

Also, letPnt
Ci

be the general penalty value, that is assigned
by Cg at a specific timet. Equation 7 computes the ad-
justed reputation level ofCi (Rep

* [tb,t2]
Ci

). This equation
reflects the incentive that we provide, so that CWSs in gen-
eral would be able to analyze their further reputation adjust-
ments upon fake action.

Rep
* [tb,t2]
Ci

=

{
αRep

[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

, if redeemed;

αRep
[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

if penalyzed.
(7)

whereα + β = 1.
As discussed before,Cg will decide to redeem the com-
munity Ci if the evolutionary value for the reputation is
more thanCi’s previous reputation value, i.e.:Evol

[t1,t2]
Ci

>

Rep
[tb,t0]
Ci

. If Cg decides to redeem the communityCi, then
the previous reputation value (from timetb to investigation
time at t1) would be considered together with the evolu-
tionary reputation value as a result of investigation during
[t1, t2]. If Cg decides to penalize the communityCi, then
the previous reputation is considered regardless of the im-
proved reputation obtained in the period of[t0, t1]. And
in addition to the evolutionary reputation, a penaltyPnt2

Ci

would be assigned at timet2.
False alarm detection.It is worth to discuss more about

alternatives ofCg’s fake positives recognition. Consider the
two cases thatCg falsely, and truly recognizes the fake pos-
itives. In the former case, the positives are real, therefore,
they reflect the actual performance of the community. Then
even being suspended, the community can easily prove the
quality level as it continues as before and basically would
not loose anything. In the later case, the positives are fake,
so the community needs to improve its actual quality level
to prove suspended enhanced reputation level. If the com-

Figure 3. Fake negative correction cases.

munity failed to fulfill such reputation,Cg would decrease
its previous reputation level.

4.2 Fake Negative Correction

Similar to fake positive case, there might be some fake
negatives in order to decrease the reputation level of a par-
ticular community. This could happen when a commu-
nity or a set of communities would like to weaken a par-
ticular community (by dropping its reputation level) hop-
ing not to compete with them. However, one unique case
should not be excluded in which, a particular community
would mal-behave and after certain number of providing
services and obtaining negative feedbacks, claims that the
feedbacks were fake and do not reflect its actual reputation
level. To avoid such a situation, each community is respon-
sible to recognize a change in its reputation level and conse-
quently report toCg. Upon received report,Cg would de-
cide whether the negative feedbacks were really as a result
of the mal-behavior of the community or as a result of some
other parties fake negatives. IfCg initiates the investigation
at timet1, after a period of evolutionary time,Cg would de-
cide for the reputation adjustment at timet2. In case of re-
deeming the communityCi that was suspected to have fake
negative feedbacks, the negatives are discarded (Rep

[t0,t1]
Ci

is not considered), and a rewardRwt2
Ci

is assigned at time
t2. The reason is to discourage the opponent communities
not to cause a fake negative feedbacks forCi and hope to
degrade its reputation level. However, if after evolutionary
investigation,Cg decides to penalizeCi, then the negative
feedbacks are also considered (reputation is computed by
Rep

[tb,t1]
Ci

), and a penaltyPnt2
Ci

is assigned to the commu-
nity. Equation 8 computes the updated reputation value of
the communityCi (Rep

* [tb,t2]
Ci

).

Rep
* [tb,t2]
Ci

=

{
αRep

[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

+ Rwt2
Ci

, if redeemed;

αRep
[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

if penalyzed.
(8)

4.3 Theoretical Analysis

In this section, we would like to discuss in details the
updates of reputation level when a particular communityCi

5



Figure 4. The tree of backward induction reasoning.

causes fake feedbacks that eventually is beneficiary for it-
self. To this end, we follow the steps over this reputation
updates and elaborateCg’s actions on them. For simplicity
reasons, here we only analyze the case of self-positive feed-
backs and generalize our discussion to fake negative feed-
backs. We objectively assume that penalizing a community
is relative to the reputation improvement that community
had obtained. In this section, we use backward induction
reasoning technique to show that CWSs loose interest in do-
ing malicious acts that cause extra (fake) positives for them-
selves or extra (fake) negatives for some others.

To better analyze the intentions the communities could
follow, we calculate the expected reputation value of a par-
ticular community in the case that the community acts mali-
ciously to provide fake positive feedbacks for itself and the
case that the community acts as normal and performs its ac-
tual capabilities. By comparing the two expected values, the
typical communityCi will decide either to act maliciously
or as normal. Letqt

Ci be the probability that the controller
agentCg notices the real intention of the communityCi and
take actions with penalizingCi at timet. We compute the
expected reputation ofCi as a result of a malicious action in
equation 9 and as a result of normal action in equation 10.

E(Rep
* [tb,t2]
Ci

|Ci faked) =

qt2
Ci

(αRep
[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

)

+ (1− qt2
Ci

)(αRep
[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

)

(9)

E(Rep
[tb,t2]
Ci

|Ci notfaked) = Rep
[tb,t2]
Ci

(10)

Figure 4 is the tree representing the backward induction
reasoning through actions of the communityCi and corre-
sponding reactions made by the controller agentCg in two
steps. In this figure,IMP is considered as the state that
the community has provided some fake positives ad thus
improved its reputation level. We also refer in this figure to

PN as the state that the community’s fake action is detected
and thus penalized byCg. As it is illustrated, the commu-
nity that provides fake positives, obtains an improvement,
which could be followed by a penalty. Here we state that the
probability ofCg’s detection given the fact that theCi has
faked before is high. Therefore, ifCi has been already pe-
nalized, it is so hard to retaliate and improve again. There is
a slight chance thatCi fakes andCg ignores, which comes
with a very small probability. Thus, we compute the ex-
pected reputation level of both cases and compare them.

Definition 1. Let Imp
[tb,t2]
Ci

be the difference between the
adjusted reputation (in the case where the community is un-
der investigation) and normal reputation (in the opposite
case) within[tb, t2], i.e:

Imp
[tb,t2]
Ci

= Rep
* [tb,t2]
Ci

−Rep
[tb,t2]
Ci

The following lemma gives the condition for the penalty
to be used, so that the communities will not act maliciously.

Lemma 1. If Pnt2
Ci

> 1

q
t2
Ci

Imp
[tb,t2]
Ci

−αRep
[t0,t1]
Ci

, then com-

munities obtain less reputation value if they act maliciously
and provide fake feedbacks for themselves.

Proof. To prove the lemma, we should consider the con-
dition true and prove thatE(Rep

* [tb,t2]
Ci

|Ci faked) <

E(Rep
[tb,t2]
Ci

|Ci Not faked). By simple calculation we get:

E(Rep
[tb,t2]
Ci

|Ci Not faked)− E(Rep
* [tb,t2]
Ci

|Ci faked) =

Pnt2
Ci
− 1

q
t2
Ci

Imp
[tb,t2]
Ci

+ αRep
[t0,t1]
Ci

The obtained value is positive, so we are done.

6



Table 1. Simulation summarization over the
obtained measurements.

CWS Type WS Density WS Type WS QoS
Ordinary [25.0%, 35.0%] Good [0.5, 1.0]

Faker [25.0%, 35.0%] Bad [0.0, 0.5]
Intermittent [25.0%, 35.0%] Fickle [0.2, 0.8]

5 Experimental Results

In this section, we describe the implementation of a
proof of concept prototype. In the implemented prototype,
CWSs are composed of distributed web services, that are
implemented asJava c©TM agents. The agent reasoning
capabilities are implemented as Java modules. The testbed
environment is populated with two agent types: (1) service
provider agents that are known as web services and gath-
ered in a community (we assume only one type of service is
provided and therefore consumed); and (2) user agents that
are seeking for the best service provided by a web service.
In general, the simulation consists of a series of empirical
experiments tailored to show the adjustment of the CWS’s
reputation level. During the elapsing RUNs, web services,
masters and users (that are initially activated) build their pri-
vate knowledge. Table 1 represents three types of CWSs
we consider in our simulation: ordinary, faker and intermit-
tent. Ordinary community acts normal and reveals what it
has, the faker community is the one that provides fake feed-
backs in support of itself, and the intermittent community
is the one that alternatively changes its strategies over the
time. CWSs contain a number of web services, that offers a
quality of Service (QoS). As it is shown in table 1, the QoS
value is divided into three ranges.

In each RUN, a number of users are selected to search
for the best service. Strictly speaking, users are only di-
rected to ask CWSs for a service and thus user would not
find out about the web service that is assigned by the mas-
ter of the community. In order to find the best community,
the requesting user would evaluate the CWSs regarding to
their reputation level. Some times, the users are in contact
with some communities that are very good for the user, so
the users re-select them. If the user is rejected from the best
selected community, he would ask the second best (and so
on) community in terms of reputation level. After getting a
response from a community, the user agent would provide a
feedback relative to the quality of the obtained service and
the community responsiveness. The feedbacks are logged
in the logging mechanism that is supervised byCg. The
accumulated feedbacks would affect the reputation level of
communities. In other words, the communities would loose
their users if they receive negative feedbacks, by which their
reputation level is dropped.

-0.1


0.1


0.3


0.5


1
 3
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35
 37
 39
 41
 43
 45
 47
 49
W
eb

 s
er

vi
ce

 Q
o

S



C8 web services QoS


average QoS
WS individual QoS


0


0.2


0.4


0.6


1
 31
 61
 91
 121
 151
 181
 211
 241
 271


Number of Runs


C
o

m
m

u
n

it
y 



R

ep
u

ta
ti

o
n




Average web services QoS
 C8.Rep

C8 web services QoS


p1
 p2

WS individual QoS


average QoS


Figure 5. Communities overall quality of ser-
vice vs. the number of simulation RUNs.

Taking into account the general incentive for the CWSs
to process most possible users, communities in general,
compete to increase their reputation level. This is done by
colluding with a user (or a small group of users) to pro-
vide consecutive positive feedbacks. In the empirical ex-
periment, we are interested to observe the over-RUN repu-
tation level of different types of communities and how fast
and efficient the adjustment is performed by theCg. Figure
5 illustrates the plot of reputation level for a faker commu-
nity C8. The upper plot represents the individual QoS for
the community’s assigned web services. In this plot the gray
line defines the average QoS for the web services. The most
prominent feature of the plot is the comparison of the repu-
tation level with the average of the community web services
QoS. The average value is assumed to be the actual QoS for
the community. In general, there would be convergence to
such value if the community is acting in an ordinary manner
(for C8 is 0.173). The lower plot illustrates the reputation
level of this community over the elapsing RUNs. Here we
notify that the master of a community is responsible to as-
sign the web services to the user requests. To this end, nor-
mally the high quality web services are assigned first until
they become unavailable, which forces the master agent to
assign other lower quality web services. Thus starting the
RUNs, C8 gains reputation value (up to 0.313), which is
better than its individual average quality of service. In fig-
ure 5 the peekP1 defines the RUN in which the community
C8 is out of high quality web services. After passing this
point, the reputation level of this community is decreased.

Figure 6 illustrates communityC8 reputation level in
comparison with an ordinary communityC6. C8 at point
P3 decides to provide fake positive feedbacks for himself to
increase self reputation level. For the interval of 19 RUNs,
this community gains higher reputation level up to the point
P4. The controller agentCg, periodically verifies the feed-

7



0


0.2


0.4


0.6


0.8


1

1



3
1



6
1



9
1



1
2
1



1
5
1



1
8
1



2
1
1



2
4
1



2
7
1



3
0
1



3
3
1



3
6
1



3
9
1



4
2
1



4
5
1



4
8
1



Number of Runs


C
o

m
m

u
n

it
y 

R
ep

u
ta

ti
o

n
 L

ev
el



C6 average web services QoS
 C6.Rep


C8 average web services QoS
 C8.Rep


C6 social reputation level 

over time


C8 social reputation level 

over time
P1


P3


P4


P2


Figure 6. Communities overall quality of ser-
vice vs. the number of simulation RUNs.

back logs, in order to recognize the malicious actions. At
P4 the controller agentCg notices the malicious act ofC8
and freezes the obtained feedbacks in order to decide to pe-
nalize. PeekP2 is the point in which the communityC8
is penalized in his reputation level. AfterP2 a drastic de-
crease in reputation value is seen which goes underneath
C8’s average quality of service (up to 0.112). There is also a
continuing but slower increase for the reputation of the faker
communityC8 that persists long after the first fake action
recognition. Thus, there appear to be strong restriction ef-
fects, in which eventually the faker communities loose their
users. However, there is also an ongoing effect of social
influence, in which users doubt in communities that have
drastic decrease in their reputation level.

6 Conclusion

The contribution of this paper is the proposition of a new
incentive-based reputation model for community of web
services gathered to facilitate dynamic users requests. The
reputation of the communities are independently accumu-
lated in binary feedbacks reflecting the satisfaction or dis-
satisfaction of the users being serviced by a web service
assigned via the master of the community. The model rep-
resents a sound logging mechanism in order to maintain
effective reputation assessment for the communities. The
controller agent investigates the logging feedbacks released
by the users to detect the fake feedbacks as a result of collu-
sion between a community and a user (or a group of users),
which are provided in support of the community. Upon de-
tection, the controller agent maintains an adjustment in the
logging system, so that the malicious community would be
penalized in its reputation level.

Our model has the advantage of providing a suitable met-
rics used to assess the reputation of a community. More-
over, the assessed metrics are valid having a sound logging
mechanism in the sense that communities would obtain the
incentive not to fake and act as their ordinary capabilities.

The proposed mechanism efficiency is analyzed through a
defined testbed. Our objective for future work is to advance
the assessment model to enhance the model efficiency. In
the logging system, we need to optimize detection process,
trying to formulate it in the sense to be adaptable to diverse
situations. Finally, we plan to extend the empirical analy-
sis in order to capture more results reflecting the proposed
model capabilities.

References

[1] A.S. Ali, S.A. Ludwig, and O.F. Rana. A cognitive trust-based
approach for web service discovery and selection. Proc. of the
3’rd European Conf. on WS, pp. 38-40, USA, ECOWS 2005.

[2] Z. Malik and A. Bouguettaya. Evaluating rater credibility
for reputation assessment of web services. 8’th Int. Conf. on
Web Information Systems Engineering (WISE 2007), 14(2-3),
Nancy, France, Decr 2007.

[3] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic
QoS and soft contracts for transaction based Web services.
IEEE Int. Conf. on Web Services, pp. 126-133, ICWS 2007.

[4] E. M. Maximilien. Multiagent system for dynamic web ser-
vices selection. Proc. of 1’st Workshop on Service-Oriented
Computing and Agent-Based Eng., pp 2529, SOCABE2005.

[5] R. Jurca, B. Faltings, and W. Binder. Reliable QoS monitor-
ing based on client feedback. Proceedings of the 16th Inter-
national World Wide Web Conference (WWW07), pp. 1003-
1011, Banff, Canada, May 8-12 2007.

[6] E. M. Maximilien, M. P. Singh. Conceptual model of web ser-
vice reputation. SIGMOD Record 31(4): 36-41, 2002.

[7] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, Ph. Thiran.
Reputation of communities of web services - preliminary in-
vestigation. Proc. of the 22’nd IEEE Int. Conf. on Advanced
Inf. Networking and App., pp. 1603-1608, AINA2008.

[8] Organization for the advancement of structured information
standards. Introduction to UDDI: Important features and func-
tional concepts. www.oasis-open.org, October 2004.

[9] W. Yao, J.Vassileva. A Review on trust and reputation for web
service selection. 1’st Int. Workshop on Trust and Reputation
Management in Massively Dis. Comp. Sys. TRAM2007.

[10] S. Kalepu, S. Krishnaswamy, S. W. Loke. A QoS metric
for selecting Web services and providers. Proceedings. Fourth
International Conference on Web Information Systems Engi-
neering Workshops, pp. 131-139, 2003.

[11] E. M. Maximilien, M. P. Singh. Toward automatic web ser-
vices trust and selection. Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC), New
York, November 2004.

[12] M. Ruth, and T. Shengru. Concurrency Issues in Automating
RTS for Web Services. IEEE International Conference on Web
Services, pp. 1142-1143, ICWS 2007.

[13] J. Bentahar, Z. Maamar, D. Benslimane, and Ph. Thiran. An
Argumentation Framework for Communities of Web Services.
In IEEE Intelligent Systems, 22(6): 75-83, 2007.

8


